Global stability for separable nonlinear delay differential equations
نویسندگان
چکیده
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Global stability of the equilibrium for scalar delay differential equations
This version has a lot of inserted Comments to indicate what must be done and what will be in here when this is completed. [These Comments also note open questions, where possible, so for suggested results not noted as open one may assume the proofs are known, even if not yet included.] This was originally intended as a revised version of what became [5] before publication, then became comments...
متن کاملOn stability of some linear and nonlinear delay differential equations
New explicit conditions of exponential stability are obtained for the nonautonomous equation with several delays ẏ(t)+ l ∑ k=1 ak(t)y ( hk(t) ) = 0 by the following method: several delays in the left-hand side are chosen and the solution is estimated using an auxiliary ordinary differential equation ẏ(t)+ ∑ k∈I ak(t)y(t)= 0, where I ∈ {1,2, . . . , l} is the chosen set of indices. These results...
متن کاملGlobal Asymptotic Stability in a Class of Nonlinear Differential Delay Equations
An essentially nonlinear differential equation with delay serving as a mathematical model of several applied problems is considered. Sufficient conditions for the global asymptotic stability of a unique equilibrium are derived. An application to a physiological model by M.C. Mackey is treated in detail.
متن کاملOn delay-dependent stability for a class of nonlinear stochastic delay-differential equations
Global asymptotic stability conditions for discrete nonlinear scalar stochastic systems with state delay are obtained based on the convergence theorem for semimartingale inequalities, without assuming the Lipschitz conditions for nonlinear drift functions. The Lyapunov-Krasovskii and degenerate functionals techniques are used. The derived stability conditions are directly expressed in terms of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2005
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2004.02.013